Working with Imaginary Numbers

We use the notation i to help us represent imaginary numbers
$i=\sqrt{-1}$
$i^{2}=-1$

Examples for when we might use this would be when we want to simplify square roots that are negative, or find all of the answers to a polynomial equation.

For example if we want to simplify $\sqrt{-5}$, we can rewrite that as $\sqrt{-1} * \sqrt{5}$. Since $\sqrt{-1}=i$, we would have $i \sqrt{5}$ as our simplified answer.

Here are some more examples of using i to help you simplify:
$\sqrt{-100}=\sqrt{-1} * \sqrt{100}=i * 10=10 i$
$\sqrt{-28}=\sqrt{-1} * \sqrt{28}=i \sqrt{28}=i * \sqrt{4} * \sqrt{7}=2 i \sqrt{7}$
$\sqrt{-3} * \sqrt{-3}=i \sqrt{3} * i \sqrt{3}=i^{2} \sqrt{9}=3 i^{2}=-3$

Simplifying expressions of the form $\boldsymbol{i}^{\boldsymbol{x}}$

1. If x is an odd number, split the term up as $i^{x-1} * i$. This makes it easier to solve, as $\mathrm{x}-1$ will be an even number.
2. If x is initially an even number, proceed to the next step.
3. Take the term with the even exponent, and rewrite it using i^{2} and raised to another power; half of the even exponent
a. For example, if it is i^{10}, it would become $\left(i^{2}\right)^{5}$, as 5 is half of 10 (Also, $2 * 5=10$)
4. Replace the i^{2} term with - 1
5. Perform the operation for the -1 term
6. If needed, multiply the answer with the remaining i

Examples:

$$
\begin{aligned}
& i^{29}=i^{28} * i=\left(i^{2}\right)^{14} * i=(-1)^{14} * i=1 * i=i \\
& i^{54}=\left(i^{2}\right)^{27}=(-1)^{27}=-1 \\
& i^{43}=i^{42} * i=\left(i^{2}\right)^{21} * i=(-1)^{21} * i=-1 * i=-i \\
& i^{88}=\left(i^{2}\right)^{44}=(-1)^{44}=1
\end{aligned}
$$

Using imaginary numbers in solving quadratic equations

The general form of a solution to a quadratic equation with an imaginary number as part of the solution is $a \pm b i$, where a and b are both real numbers. We will see this through the following examples.

Solve the equation: $x^{2}+2 x+5$
Using the quadratic equation, we would have:

$$
\begin{aligned}
\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)} & =\frac{-2 \pm \sqrt{4-20}}{2} \\
& =\frac{-2 \pm \sqrt{-16}}{2} \\
& =\frac{-2 \pm i \sqrt{16}}{2} \\
& =\frac{-2 \pm 4 i}{2} \\
& =-1 \pm 2 i
\end{aligned}
$$

So the solutions are $-1+2 i$ and $-1-2 i$

Solve the equation: $3 x^{2}-6 x+14$
Using the quadratic equation, we would have:

$$
\begin{aligned}
\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(14)}}{2(3)} & =\frac{6 \pm \sqrt{36-168}}{6} \\
& =\frac{6 \pm \sqrt{-132}}{6} \\
& =\frac{6 \pm i \sqrt{132}}{6} \\
& =\frac{6 \pm i \sqrt{4} \sqrt{33}}{6} \\
& =\frac{6 \pm 2 i \sqrt{33}}{6} \\
& =\frac{3 \pm i \sqrt{33}}{3}
\end{aligned}
$$

So the solutions we have right now are $\frac{3}{3}+\frac{i \sqrt{33}}{3}$ and $\frac{3}{3}-\frac{i \sqrt{33}}{3}$, which can be simplified to:

$$
1+\frac{i \sqrt{33}}{3} \text { and } 1-\frac{i \sqrt{33}}{3}
$$

Rationalizing Denominators with Imaginary Numbers

Say we had the fraction $\frac{4-i}{2+3 i}$ and we want to rationalize the denominator. Here are the steps (This process is very similar to rationalizing denominators with square roots):

1. Multiply both the numerator and denominator by the conjugate of the denominator.
a. In our example, this would mean multiplying by $2-3 i$ on both the numerator and the denominator
b. This would look like $\frac{4-i}{2+3 i} * \frac{2-3 i}{2-3 i}$
2. FOIL (or distribute if necessary) the numerator and denominator, and simplify each part.
a. In our example, we would have $\frac{8-12 i-2 i+3 i^{2}}{4-6 i+6 i-9 i^{2}}$. This simplifies to $\frac{8-14 i+3 i^{2}}{4-9 i^{2}}$
3. Substitute - 1 in for any i^{2} terms and simplify even more.
a. For our example, substituting -1 in for i^{2} would leave us with $\frac{8-14 i+3(-1)}{4-9(-1)}$. This simplifies to $\frac{8-14 i-3}{4+9}$ which simplifies even further to $\frac{5-14 i}{13}$
4. Write your answer in the form $a+b i$. Simplify if necessary
a. For our example, this would be $\frac{5}{13}-\frac{14 i}{13}$, which is our final answer as neither fraction can be simplified.

Example: Simplify the expression $\frac{3+5 i}{6-7 i}$
The conjugate of the denominator is $6+7 i$, so we use that to help us simplify.

$$
\begin{aligned}
\frac{3+5 i}{6-7 i} * \frac{6+7 i}{6+7 i} & =\frac{18+21 i+30 i+35 i^{2}}{36+42 i-42 i-49 i^{2}} & & \text { *Multiply by the conjugate and FOIL } \\
& =\frac{18+51 i+35 i^{2}}{36-49 i^{2}} & & \text { *Simplify any like terms } \\
& =\frac{18+51 i+35(-1)}{36-49(-1)} & & \text { *Substitute -1 in for } i^{2} \\
& =\frac{18+51 i-35}{36+49} & & \text { *Simplify by multiplying the -1 terms } \\
& =\frac{-17+51 i}{85} & & \text { *Simplify any like terms } \\
& =-\frac{17}{85}+\frac{51 i}{85} & & \text { *Write in the form } a+b i \\
& =-\frac{1}{5}+\frac{3 i}{5} & & \text { *Simplify the fractions by dividing by } 17 \text { on both }
\end{aligned}
$$

