Logarithmic Equations

 $\log_b a = x$ is equivalent to $a = b^x$

The default base for logarithms is 10 $\log_{10} 100$

Example: $\log_2 8 = 3$, because $8 = 2^3$

Example: log 100 is the same as

The natural log is $\ln x$, which has base e

 $e \approx 2.718281828 \dots$

 $\ln x = \log_e x$

$\log xy = \log x + \log y$
$\log \frac{x}{y} = \log x - \log y$
log y
$\log_x y = \frac{1}{\log x}$
If $\log x = \log y$, then $x = y$
For $\log_a x$, the domain is x >0, otherwise
the logarithm is undefined

Solving an Exponential or Logarithmic Equation

Solve the equation: $4^x = 87$

$\log 4^x = \log 87$	*Take the log on both sides
$x \log 4 = \log 87$	*Move the exponent (x) to the front of the log
$x = \frac{\log 87}{\log 4} \approx 3.221$	*Divide both sides by log 4

Solve the equation: $\log_5 x = 6$ $x = 5^6$ *Rearrange the equation so that the log is not needed anymore x = 15625

Expand the following expression and simplify: $\ln 15ab^3$

$\ln 15ab^3 = \ln 15 + \ln a + \ln b^3$	*Expand the expression
$\ln 15 + \ln a + \ln b^3 = \ln 15 + \ln a + 3 \ln b$	*Move the exponent (3) to the front of the natural log

Compound Interest Questions

The final answer is $\ln 15 + \ln a + 3 \ln b$

General Compound Interest Equation:	$A = P(1 + \frac{r}{n})^{nt}$
Compounded Continuously:	$A = Pe^{rt}$

A = Amount at the end of the time period

P = Principal amount put in

r = Interest rate (as a decimal)

n = Number of times compounded per year

t = Length of the time period in years

 $e \approx 2.718281828 \dots \rightarrow Use the e^x$ button on your calculator

Examples: \$1200 is put into a bank account that earns 8% interest. Find the amount of money in the bank account after 5 years if the interest is compounded annually, monthly, and continuously. Round to the nearest cent.

In this particular problem:

A = Amount in the account after the 5 years (also what we are trying to find)

- P = \$1200
- r = 8% = .08
- t = 5 years
- n = 1 for annually
- n = 12 for monthly

Annually:
$$A = P(1 + \frac{r}{n})^{nt}$$

 $A = 1200(1 + \frac{.08}{1})^{1*5}$
 $A = 1200(1.08)^5$
 $A = \$ 1763.19$

*Make sure the 1.08 is in parenthesis in your calculator so that the correct order of operations is followed

Monthly:
$$A = P(1 + \frac{r}{n})^{nt}$$

 $A = 1200(1 + \frac{.08}{12})^{12*5}$
 $A = 1200(1.00\overline{6})^{60}$
 $A = \$ 1787.81$

Continuously:
$$A = Pe^{rt}$$

 $A = 1200e^{.08*5}$
 $A = 1200e^{.4}$
 $A = 1790.19

You are trying to save \$80,000 to help you purchase a home. You start with \$25,000 in a bank account that gains 4% interest. How long will it take you to save the \$80,000 you need if the interest is compounded annually, quarterly, and continuously? Round to the nearest hundredth.

In this particular problem:

A = \$80,000

P = \$25,000

r = 5% = .05

t = How long it will take you save the money you need (what we are trying to find)

n = 1 for annually

n = 4 for quarterly

Annually: $A = P(1 + \frac{r}{n})^{nt}$	
$80000 = 25000(1 + \frac{.05}{1})^{1*t}$	
$\frac{\frac{80000}{25000}}{25000} = (1 + .05)^t$	*Divide by 25000 on both sides
$3.2 = (1.05)^t$	*Add inside the parenthesis
$\log 3.2 = \log 1.05^t$	*Take the log on both sides
$\log 3.2 = t \log 1.05$	*Move the exponent (t) to the front of the log
$\frac{\log 3.2}{\log 1.05} = t$	*Divide by log 1.05 on each side
$t = 23.84 \ years$	

Quarterly: $A = P(1 + \frac{r}{n})^{nt}$ $80000 = 25000(1 + \frac{.05}{4})^{4*t}$ $\frac{80000}{25000} = (1 + \frac{.05}{4})^{4t}$ *Divide by 25000 on both sides $3.2 = (1.0125)^{4t}$ *Add inside the parenthesis $\log 3.2 = \log 1.0125^{4t}$ *Take the log on both sides

$\log 3.2 = 4t \log 1.0125$	*Move the exponent (4t) to the front of the log
$\frac{\log 3.2}{\log 1.0125} = 4t$	*Divide by log 1.0125 on each side
4t = 93.6324	
$t = 23.41 \ years$	

Continuously: $A = Pe^{rt}$	
$80000 = 25000e^{.05*t}$	
$\frac{80000}{25000} = e^{.05t}$	*Divide by 25000 on both sides
$3.2 = e^{.05t}$	
$\ln 3.2 = \ln e^{.05t}$	*Take the natural log on both sides (In goes with e)
$\ln 3.2 = .05t \ln e$	*Move the exponent (.05t) to the front of the log
$\ln 3.2 = .05t$	$\ln e = 1$
$t = \frac{\ln 3.2}{.05}$	*Divide by .05 on both sides
t = 23.26 years	