Logarithmic Equations
$\log _{b} a=x$ is equivalent to $a=b^{x} \quad$ Example: $\log _{2} 8=3$, because $8=2^{3}$

The default base for logarithms is 10 $\log _{10} 100$

The natural \log is $\ln x$, which has base e $e \approx 2.718281828 \ldots$
$\ln x=\log _{e} x$

Properties of Logarithmic Equations

$\log _{a} 1=0$
$\log x y=\log x+\log y$
$\log _{a} a=1$
$\ln e=1$
$\log _{a} a^{x}=\mathrm{x}$
$\ln e^{x}=x$
$\log _{a} b^{\mathrm{x}}=\mathrm{x} \log _{a} b$
$a^{\log _{a} b}=\mathrm{b}$

Example: $\log 100$ is the same as Example: $\log 100$ is the same as

Solve the equation: $\log _{5} x=6$
$x=5^{6}$
*Rearrange the equation so that the log is not needed anymore
$x=15625$

Expand the following expression and simplify: $\ln 15 a b^{3}$
$\ln 15 a b^{3}=\ln 15+\ln a+\ln b^{3}$
$\ln 15+\ln a+\ln b^{3}=\ln 15+\ln a+3 \ln b$
*Expand the expression
*Move the exponent (3) to the front of the natural log

The final answer is $\ln 15+\ln a+3 \ln b$

General Compound Interest Equation:
Compounded Continuously:
$A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=P e^{r t}$
$\mathrm{A}=$ Amount at the end of the time period
$\mathrm{P}=$ Principal amount put in
$\mathrm{r}=$ Interest rate (as a decimal)
$\mathrm{n}=$ Number of times compounded per year
$t=$ Length of the time period in years
$e \approx 2.718281828 \ldots \rightarrow$ Use the e^{x} button on your calculator

Examples: $\$ 1200$ is put into a bank account that earns 8% interest. Find the amount of money in the bank account after 5 years if the interest is compounded annually, monthly, and continuously. Round to the nearest cent.

In this particular problem:
$\mathrm{A}=$ Amount in the account after the 5 years (also what we are trying to find)
$\mathrm{P}=\$ 1200$
$r=8 \%=.08$
$t=5$ years
$\mathrm{n}=1$ for annually
$\mathrm{n}=12$ for monthly

Annually: $A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=1200\left(1+\frac{.08}{1}\right)^{1 * 5}$
$A=1200(1.08)^{5}$
$A=\$ 1763.19$
*Make sure the 1.08 is in parenthesis in your calculator so that the correct order of operations is followed

Monthly: $A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=1200\left(1+\frac{.08}{12}\right)^{12 * 5}$
$A=1200(1.00 \overline{6})^{60}$
$A=\$ 1787.81$

Continuously: $A=P e^{r t}$
$A=1200 e^{.08 * 5}$
$A=1200 e^{4}$
$A=\$ 1790.19$

You are trying to save $\$ 80,000$ to help you purchase a home. You start with $\$ 25,000$ in a bank account that gains 4% interest. How long will it take you to save the $\$ 80,000$ you need if the interest is compounded annually, quarterly, and continuously? Round to the nearest hundredth.

In this particular problem:
$\mathrm{A}=\$ 80,000$
$\mathrm{P}=\$ 25,000$
$r=5 \%=.05$
$t=$ How long it will take you save the money you need (what we are trying to find)
$\mathrm{n}=1$ for annually
$\mathrm{n}=4$ for quarterly

Annually: $A=P\left(1+\frac{r}{n}\right)^{n t}$
$80000=25000\left(1+\frac{.05}{1}\right)^{1 * t}$
$\frac{80000}{25000}=(1+.05)^{t}$
*Divide by 25000 on both sides
$3.2=(1.05)^{t} \quad$ *Add inside the parenthesis
$\log 3.2=\log 1.05^{t}$
$\log 3.2=t \log 1.05$
*Take the log on both sides
*Move the exponent (t) to the front of the log
*Divide by $\log 1.05$ on each side
$\frac{\log 3.2}{\log 1.05}=t$
$t=23.84$ years

Quarterly: $A=P\left(1+\frac{r}{n}\right)^{n t}$
$80000=25000\left(1+\frac{.05}{4}\right)^{4 * t}$
$\frac{80000}{25000}=\left(1+\frac{.05}{4}\right)^{4 t}$
$3.2=(1.0125)^{4 t}$
$\log 3.2=\log 1.0125^{4 t}$
*Divide by 25000 on both sides
*Add inside the parenthesis
*Take the log on both sides
$\log 3.2=4 t \log 1.0125$
$\frac{\log 3.2}{\log 1.0125}=4 t$
$4 t=93.6324$
$t=23.41$ years

Continuously: $A=P e^{r t}$
$80000=25000 e^{.05 * t}$
$\frac{80000}{25000}=e^{.05 t}$
$3.2=e^{.05 t}$
$\ln 3.2=\ln e^{.05 t}$
$\ln 3.2=.05 t \ln e$
$\ln 3.2=.05 t$
$t=\frac{\ln 3.2}{.05}$
$t=23.26$ years
*Move the exponent (4t) to the front of the log
*Divide by $\log 1.0125$ on each side
*Divide by 25000 on both sides
*Take the natural log on both sides (In goes with e)
*Move the exponent (. 05 t) to the front of the log
${ }^{*} \ln e=1$
*Divide by .05 on both sides

